by large plasmon-phonon interactions with anomalous temperature shifts of the resonance frequencies. Substitution of arsenic in CoAs₃ by small amounts of phosphorus or antimony results in an additional short-waved mode at 362 and 342 cm⁻¹, respectively, which can be assigned to an internal vibration of the four-membered anionic rings not allowed in the binary skutterudites. The infrared spectra of the ordered ternary skutterudites $MGe_{1.5}Y_{1.5}$ (M = Co, Ir) show a large number of the total of 64 ir-allowed lattice modes, whereas the spectra of the rhodium compounds are mainly of the free carrier type. RhGe_{1.5}S_{1.5} and the firstly obtained RhGe_{1.5}Se_{1.5} exhibit small deviations from the formerly claimed pseudocubic cell. The lattice constants (space group R3) are a = 828.2(1) pm, $\alpha =$ $89.85(1)^{\circ}$ and a = 854.6(1) pm, $\alpha = 89.86(1)^{\circ}$, respectively.

Monoclinic-Trigonal Transition in Some $M_3^4 M'^{III}(XO_4)_3$ Compounds: The High-Temperature Form of $(NH_4)_3 In(SO_4)_3$. B. JOLIBOIS, G. LAPLACE, F. ABRAHAM,* AND G. NOWOGROCKI. Universite des Sciences et Techniques de Lille, B.P. 36, 59655 Villeneuve d'Ascq Cedex, France. The hightemperature form of $(NH_4)_3 In(SO_4)_3$ is rhombohedral, R3c, with a = 15.531 (12), c = 9.163 (8) Å, Z = 6. The structure was solved to R = 0.023 for 570 independent reflections measured at about 140°C. The structure is built up of $[In(SO_4)_3]_{\infty}$ columns extending along the c axis and composed of InO₆ octahedra and SO₄ tetrahedra linked together; this arrangement is very similar to that found in the lowtemperature form. To explain the transition mechanism, existence of an intermediate phase of point symmetry $\bar{3}m$ is postulated. This phase would be the prototypic structure of the possibly ferroelastic low-temperature modification which can apparently exist only with non-spherical monovalent cations.

Lithium Substituted Cobalt Oxide Spinels $Li_x M_{1-x}Co_2O_4$ ($M = Co^{2+}, Zn^{2+}; 0 \le x \le 0.4$). N. K. APPANDAIRAJAN, B. VISWANATHAN,^{*} AND J. GOPALAKRISHNAN, Department of Chemistry, Indian Institute of Technology, Madras 600 036, India. Substitution of Li⁺ into Co₃O₄ and ZnCo₂O₄ gives rise to the solid solution series $Li_x M_{1-x}Co_2O_4$ ($M = Co^{2+}$ or Zn^{2+}) having the spinel structure up to x = 0.4. X-Ray diffraction intensities show that the spinel solid solutions are likely to have the following cation distribution: $(Co^{2+})_t [Li_x^+Co_{2+3x}^{2+}Co_{2+2}^{2+}]_0O_4$ and $(Zn_{2+x}^{2+}Co_{2+3}^{2+})_t [Li_x^+Co_{2+3x}^{2+}Co_{2+3}^{2+}]_0O_4$. Electrical resistivity and Seebeck coefficient data indicate that the electron transport in these systems occurs by a small polaron hopping mechanism.

X-Ray Study of $Hg_2Cl_2-Br_2$ and $HgCl_2-HgBr_2$ Reactions in Solid State. S. MEHDI* AND S. M. ANSARI. X-Ray Division, Regional Research Laboratory, Hyderabad 500 009, Andhra Pradesh, India. The reactions (i) $Hg_2Cl_2(s) + Br_2(g)$ and (ii) $HgCl_2(s) + HgBr_2(s)$ have been investigated by an X-ray method. Both the reactions yield two forms of the mixed halide HgClBr designated as α -HgClBr and β -HgClBr. The cell parameters of the two are as follows: α -HgClBr: a = 6.196 Å, b = 13.12 Å, c = 4.37Å, Z = 4, $\rho = 5.91$ g/cm³. The powder pattern and cell parameters are similar to that of HgCl₂. Therefore it is probable that the chlorine atoms, in the linear halogen-Hg-halogen molecules of HgCl₂ structure have been replaced by bromines, and since the radius of bromine atom is larger than that of chlorine, the lattice is larger in this case. β -HgClBr: a = 6.78, b = 13.175 Å, c = 4.17 Å, Z = 4, $\rho = 5.40$ g/cm³. These parameters are the same as those reported in the literature for β -Hg(ClBr)₂, and its X-ray powder pattern is similar to HgCl₂. Therefore this phase also has linear halogen-Hg-halogen molecules but the distribution of Cl and Br atoms is perhaps random. Heating the products (i) and (ii) up to the melting point increases the amount of α -phase and decreases the β -phase, whereas crystallisation increases the β -phase. DTA study has supported the X-ray findings.

Reduction of the Titanium Niobium Oxides. I. $TiNb_2O_7$ and $Ti_2Nb_{10}O_{20}$. S. K. E. FORGHANY AND J. S. ANDERSON,* Research School of Chemistry, Australian National University, P.O. Box 4, Canberra, A.C.T. 2600, Australia. Reduction of the titanium-niobium oxides follows a common pattern. TiO₂ is eliminated, to form a new phase richer in titanium than the original compound, and Nb(IV) replaces Ti(IV) in the original block structure, which is thereby enriched in niobium. With TiNb₂O₇, the second phase is a TiO₂-NbO₂ solid solution, with the rutile structure, initially with a high titanium content, in equilibrium with a solid solution of composition Me_3O_7 , isostructural with TiNb₂O₇. At log P_{O_2} (atm) about -9.0 this reaches the limiting composition $Ti_{0.72}Nb_{2.28}O_7$, in equilibrium with $Ti_{0.56}Nb_{0.44}O_2$. The Me_3O_7 block structure then transforms into the $Me_{12}O_{29}$ block structure ($Ti_2Nb_{10}O_{29}$ -Nb $_{12}O_{29}$ solid solution), which rapidly increases in niobium content as reduction continues. Reduction of $Ti_2Nb_{10}O_{29}$ at oxygen fugacities above log P_{O_2} (atm) = -9.0 forms the Me_3O_7 phase as the titanium-rich phase. At log $P_{O_2} = -9.0$, and a composition about $Ti_{1.6}Nb_{10.4}O_{29}$, the rutile solid solution takes over as second phase. The niobium/titanium ratio in both phases rises as reduction proceeds, and the last vestiges of the $Me_{12}O_{29}$ phase, in equilibrium with the final product, $Ti_{0.17}Nb_{0.67}O_{2}$, are almost denuded of titanium.

Reduction of the Titanium Niobium Oxides. II. $TiNb_{24}O_{62}$. S. K. E. FORGHANY AND J. S. ANDERSON,* Address as above. Interpretation of the reduction path of $TiNb_{24}O_{62}$ is complicated by uncertainty about both the stoichiometric ranges of the possible block structures and the formation of Ti-Nb solid solutions. Reduction forms the $Me_{12}O_{29}$ phase, probably from the outset, with an initial composition close to $Ti_2Nb_{10}O_{29}$, thereby rapidly depleting the $Me_{25}O_{62}$ phase of titanium. When log P_{0_4} (atm) has dropped to -9.62, a phase approximately $Ti_{0.66}Nb_{11.05}O_{29}$ is in equilibrium with titaniumfree $Nb_{25}O_{62}$ at its lower composition limit ($NbO_{2.471}$). $Nb_{25}O_{62}$ is then reduced to $Nb_{47}O_{116}$ without change in the $Me_{12}O_{29}$. At $-9.62 > \log P_{0_2}$ (atm) > -10.0, niobium is transferred to the $Me_{12}O_{29}$ phase and $Nb_{47}O_{116}$ is consumed. A second univariant equilibrium is set up as $Nb_{47}O_{116}$ is reduced to $Nb_{22}O_{54}$. This is consumed in turn, to increase the niobium content of the $Me_{12}O_{29}$ until, at log P_{0_2} close to -10.8, monophasic $Ti_{0.46}Nb_{11.52}O_{29}$ is formed. The (Ti, $Nb)O_2$ solid solution then appears and the final product is $Ti_{0.04}Nb_{0.96}O_2$, with the rutile superstructure cell reported for NbO_2 .